Юнг опыт

Кот Шредингера

Сегодня существует множество интерпретаций квантовой механики, самой популярной среди которых остается копенгагенская. Ее главные положения в 1920-х годах сформулировали Нильс Бор и Вернер Гейзенберг. А центральным термином копенгагенской интерпретации стала волновая функция — математическая функция, заключающая в себе информацию обо всех возможных состояниях квантовой системы, в которых она одновременно пребывает.

По копенгагенской интерпретации, доподлинно определить состояние системы, выделить его среди остальных может только наблюдение (волновая функция только помогает математически рассчитать вероятность обнаружить систему в том или ином состоянии). Можно сказать, что после наблюдения квантовая система становится классической: мгновенно перестает сосуществовать сразу во многих состояниях в пользу одного из них.

У такого подхода всегда были противники (вспомнить хотя бы «Бог не играет в кости» Альберта Эйнштейна), но точность расчетов и предсказаний брала свое. Впрочем, в последнее время сторонников копенгагенской интерпретации становится все меньше и не последняя причина тому — тот самый загадочный мгновенный коллапс волновой функции при измерении. Знаменитый мысленный эксперимент Эрвина Шредингера с бедолагой-котом как раз был призван показать абсурдность этого явления.

Итак, напоминаем содержание эксперимента. В черный ящик помещают живого кота, ампулу с ядом и некий механизм, который может в случайный момент пустить яд в действие. Например, один радиоактивный атом, при распаде которого разобьется ампула. Точное время распада атома неизвестно. Известен лишь период полураспада: время, за которое распад произойдет с вероятностью 50%.

Получается, что для внешнего наблюдателя кот внутри ящика существует сразу в двух состояниях: он либо жив, если все идет нормально, либо мертв, если распад произошел и ампула разбилась. Оба этих состояния описывает волновая функция кота, которая меняется с течением времени: чем дальше, тем больше вероятность, что радиоактивный распад уже случился. Но как только ящик открывается, волновая функция коллапсирует и мы сразу видим исход живодерского эксперимента.

Выходит, пока наблюдатель не откроет ящик, кот так и будет вечно балансировать на границе между жизнью и смертью, а определит его участь только действие наблюдателя. Вот абсурд, на который указывал Шредингер.

Дифракция электронов

По опросу крупнейших физиков, проведенному газетой The New York Times, опыт с дифракцией электронов, поставленный в 1961 году Клаусом Йенсоном, стал одним из красивейших в истории науки. В чем его суть?

Есть источник, излучающий поток электронов в сторону экрана-фотопластинки. И есть преграда на пути этих электронов — медная пластинка с двумя щелями. Какой картины на экране можно ожидать, если представлять электроны просто маленькими заряженными шариками? Двух засвеченных полос напротив щелей.

В действительности на экране появляется гораздо более сложный узор из чередующихся черных и белых полос. Дело в том, что при прохождении через щели электроны начинают вести себя не как частицы, а как волны (подобно тому, как и фотоны, частицы света, одновременно могут быть и волнами). Потом эти волны взаимодействуют в пространстве, где-то ослабляя, а где-то усиливая друг друга, и в результате на экране появляется сложная картина из чередующихся светлых и темных полос.

При этом результат эксперимента не меняется, и если пускать электроны через щель не сплошным потоком, а поодиночке, даже одна частица может быть одновременно и волной. Даже один электрон может одновременно пройти через две щели (и это еще одно из важных положений копенгагенской интерпретации квантовой механики — объекты могут одновременно проявлять и свои «привычные» материальные свойства, и экзотические волновые).

Но при чем здесь наблюдатель? При том, что с ним и без того запутанная история стала еще сложнее. Когда в подобных экспериментах физики попытались зафиксировать с помощью приборов, через какую щель в действительности проходит электрон, картинка на экране резко поменялась и стала «классической»: два засвеченных участка напротив щелей и никаких чередующихся полос.

Электроны будто не захотели проявлять свою волновую природу под пристальным взором наблюдателя. Подстроились под его инстинктивное желание увидеть простую и понятную картинку. Мистика? Есть и куда более простое объяснение: никакое наблюдение за системой нельзя провести без физического воздействия на нее. Но к этому вернемся еще чуть позже.

Нагретый фуллерен

Опыты по дифракции частиц ставили не только на электронах, но и на куда больших объектах. Например, фуллеренах — крупных, замкнутых молекулах, составленных из десятков атомов углерода (так, фуллерен из шестидесяти атомов углерода по форме очень похож на футбольный мяч: полую сферу, сшитую из пяти- и шестиугольников).

Недавно группа из Венского университета во главе с профессором Цайлингером попыталась внести элемент наблюдения в подобные опыты. Для этого они облучали движущиеся молекулы фуллерена лазерным лучом. После, нагретые внешним воздействием, молекулы начинали светиться и тем неминуемо обнаруживали для наблюдателя свое место в пространстве.

Вместе с таким нововведением поменялось и поведение молекул. До начала тотальной слежки фуллерены вполне успешно огибали препятствия (проявляли волновые свойства) подобно электронам из прошлого примера, проходящим сквозь непрозрачный экран. Но позже, с появлением наблюдателя, фуллерены успокоились и стали вести себя как вполне законопослушные частицы материи.

Охлаждающее измерение

Одним из самых известных законов квантового мира является принцип неопределенности Гейзенберга: невозможно одновременно установить положение и скорость квантового объекта. Чем точнее измеряем импульс частицы, тем менее точно можно измерить ее положение. Но действие квантовых законов, работающих на уровне крошечных частиц, обычно незаметно в нашем мире больших макрообъектов.

Потому тем ценнее недавние эксперименты группы профессора Шваба из США, в которых квантовые эффекты продемонстрировали не на уровне тех же электронов или молекул фуллерена (их характерный диаметр — около 1 нм), а на чуть более ощутимом объекте — крошечной алюминиевой полоске.

Эту полоску закрепили с обеих сторон так, чтобы ее середина была в подвешенном состоянии и могла вибрировать под внешним воздействием. Кроме того, рядом с полоской находился прибор, способный с высокой точностью регистрировать ее положение.

В результате экспериментаторы обнаружили два интересных эффекта. Во-первых, любое измерение положения объекта, наблюдение за полоской не проходило для нее бесследно — после каждого измерения положение полоски менялось. Грубо говоря, экспериментаторы с большой точностью определяли координаты полоски и тем самым, по принципу Гейзенберга, меняли ее скорость, а значит и последующее положение.

Во-вторых, что уже совсем неожиданно, некоторые измерения еще и приводили к охлаждению полоски. Получается, наблюдатель может лишь одним своим присутствием менять физические характеристики объектов. Звучит совсем невероятно, но к чести физиков скажем, что они не растерялись — теперь группа профессора Шваба думает, как применить обнаруженный эффект для охлаждения электронных микросхем.

Замирающие частицы

Как известно, нестабильные радиоактивные частицы распадаются в мире не только ради экспериментов над котами, но и вполне сами по себе. При этом каждая частица характеризуется средним временем жизни, которое, оказывается, может увеличиваться под пристальным взором наблюдателя.

Впервые этот квантовый эффект предсказали еще в 1960-х годах, а его блестящее экспериментальное подтверждение появилось в статье, опубликованной в 2006 году группой нобелевского лауреата по физике Вольфганга Кеттерле из Массачусетского технологического института.

В этой работе изучали распад нестабильных возбужденных атомов рубидия (распадаются на атомы рубидия в основном состоянии и фотоны). Сразу после приготовления системы, возбуждения атомов за ними начинали наблюдать — просвечивать их лазерным пучком. При этом наблюдение велось в двух режимах: непрерывном (в систему постоянно подаются небольшие световые импульсы) и импульсном (система время от времени облучается импульсами более мощными).

Полученные результаты отлично совпали с теоретическими предсказаниями. Внешние световые воздействия действительно замедляют распад частиц, как бы возвращают их в исходное, далекое от распада состояние. При этом величина эффекта для двух исследованных режимов также совпадает с предсказаниями. А максимально жизнь нестабильных возбужденных атомов рубидия удалось продлить в 30 раз.

Квантовая механика и сознание

Электроны и фуллерены перестают проявлять свои волновые свойства, алюминиевые пластинки охлаждаются, а нестабильные частицы замирают в своем распаде: под всесильным взором наблюдателя мир меняется. Чем не свидетельство вовлеченности нашего разума в работу мира вокруг? Так может быть правы были Карл Юнг и Вольфганг Паули (австрийcкий физик, лауреат Нобелевской премии, один из пионеров квантовой механики), когда говорили, что законы физики и сознания должны рассматриваться как взаимодополняющие?

Но так остается только один шаг до дежурного признания: весь мир вокруг суть иллюзорное порождение нашего разума. Жутковато? («Вы и вправду думаете, что Луна существует лишь когда вы на нее смотрите?» — комментировал Эйнштейн принципы квантовой механики). Тогда попробуем вновь обратиться к физикам. Тем более, в последние годы они все меньше жалуют копенгагенскую интерпретацию квантовой механики с ее загадочным коллапсом волной функции, на смену которому приходит другой, вполне приземленный и надежный термин — декогеренция.

Дело вот в чем — во всех описанных опытах с наблюдением экспериментаторы неминуемо воздействовали на систему. Подсвечивали ее лазером, устанавливали измеряющие приборы. И это общий, очень важный принцип: нельзя пронаблюдать за системой, измерить ее свойства не провзаимодействовав с ней. А где взаимодействие, там и изменение свойств. Тем более, когда с крошечной квантовой системой взаимодействуют махины квантовых объектов. Так что вечный, буддистский нейтралитет наблюдателя невозможен.

Как раз это объясняет термин «декогеренция» — необратимый с точки зрения термодинамики процесс нарушения квантовых свойств системы при ее взаимодействии с другой, крупной системой. Во время такого взаимодействия квантовая система утрачивает свои изначальные черты и становится классической, «подчиняется» системе крупной. Этим и объясняется парадокс с котом Шредингера: кот представляет собой настолько большую систему, что его просто нельзя изолировать от мира. Сама постановка мысленного эксперимента не совсем корректна.

В любом случае, по сравнению с реальностью как актом творения сознания, декогеренция звучит куда более спокойно. Даже, может быть, слишком спокойно. Ведь с таким подходом весь классический мир становится одним большим эффектом декогеренции. А как утверждают авторы одной из самых серьезных книг в этой области, из таких подходов еще и логично вытекают утверждения вроде «в мире не существует никаких частиц» или «не существует никакого времени на фундаментальном уровне».

Созидающий наблюдатель или всесильная декогеренция? Приходится выбирать из двух зол. Но помните — сейчас ученые все больше убеждаются, что в основе наших мыслительных процессов лежат те самые пресловутые квантовые эффекты. Так что где заканчивается наблюдение и начинается реальность — выбирать приходится каждому из нас.

Физика 9 кл. Интерференция света. Опыт Юнга

Подробности Просмотров: 70

1. Какие два взгляда на природу света существовали с давних пор среди ученых?

С давних пор существовало два взгляда на природу света — две теории: корпускулярная и волновая.
Одни ученые считали, что свет — это поток частиц (корпускул).
Другие рассматривали свет, как волну.
До начала XIX в. не было доказательств ни в пользу волновых, ни в пользу корпускулярных представлений.
В 1802 г. английский ученый Томас Юнг на опыте показал, что свету присуще свойство интерференции, значит, свет — это волны.
К концу 19 в. в ходе экспериментов стало ясно, что некоторые явления можно объяснить только на основе корпускулярных представлений о свете, т. е. рассматривая его как поток частиц.
В настоящее время признана справедливой как волновая, так и корпускулярная теория.
Обе теории, дополняя друг друга, позволяют объяснять многие физические явления.

2. В чем заключалась суть опыта Юнга, что этот опыт доказывал и когда был поставлен?

В 1802 г. английский ученый Томас Юнг поставил опыт по сложению пучков света от двух источников, в результате чего получил не меняющуюся во времени картину, состоящую из чередующихся светлых и темных полос.
Юнг правильно объяснил возникновение полос интерференцией света.

Однако интерференция присуща только волновым (т. е. периодическим) процессам.
Поэтому oпыт Юнга стал доказательством того, что свет обладает волновыми свойствами.

3. В чем заключается интерференция звуковых волн?

При наложении двух когерентных волн (т. е волн с одинаковой частотой и постоянной разностью фаз) образуется так называемая интерференционная картина, т. е. не меняющаяся со временем картина распределения амплитуд колебаний в пространстве.

В одних точках пространства колебания всегда происходят с максимальной амплитудой.
Это те точки, в которые колебания от обоих источников в любой момент времени приходят в одинаковых фазах и поэтому всегда усиливают друг друга.
В других точках колебания происходят с минимальной амплитудой.
Эти точки расположены по отношению к источникам так, что к ним колебания всегда приходят в противоположных фазах, ослабляя друг друга (а при равных амплитудах колебаний волны в любой момент времени полностью гасят друг друга).
В остальных точках колебания также происходят с постоянными амплитудами, значения которых лежат в промежутке от минимальной до максимальной.

4. Как на опыте можно получить интерференционную картину света?

На проволочное кольцо с ручкой, затянутое мыльной пленкой, в затемненном помещении направляется свет желтого цвета.
На пленке образуются горизонтально расположенные чередующиеся желтые и черные полосы.

5. Как объяснить появление на мыльной пленке чередующихся полос?

Свет, падая на пленку, частично отражается от передней поверхности в точке А, а частично проходит внутрь пленки и отражается от задней поверхности в точке В, после чего выходит из пленки в точке С.
Волны, выходящие из точек A и C, являются когерентными, т,к. они образуются от одного и того же источника.
Разность хода длин волн зависит от толщины пленки, которая в разных точках различна.
Если толщина пленки окажется такой, что волны будут выходить из точек А и С, имея одинаковые фазы, то эти волны при сложении усилят друг друга.
В результате возникнет максимум интерференционной картины — желтая полоса.
Если толщина пленки окажется такой, что волны будут выходить из точек А и С в противоположных фазах, то эти волны при сложении будут гасить друг друга.
В результате возникнет минимум интерференционной картины — темная полоса.

6. Что доказывает опыт с освещением мыльной пленки?

Этот опыт доказывает, что раз наблюдается явление интерференции, значит, свет обладает волновыми свойствами.

7. Что можно сказать о частоте (или длине волны) световых волн разных цветов?

Томас Юнг измерил еще и длину световой волны.
Оказалось, что свету разных цветов соответствуют волны разной длины (разной частоты).
Например, красному свету в световом диапазоне соответствует самая большая длина волны ( иначе самая маленькая частота).
Длины волн убывают (а частоты возрастают) в следующей последовательности цветов: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый.

Следующая страница — смотреть

Назад в «Оглавление» — смотреть


В 1803 году некий джентльмен опубликовал труд, в котором описывал эксперимент, доказывающий волновую теорию света. Этим джентльменом был Томас Юнг, а его опыт носил название «эксперимент с двумя щелями». Прошло уже более двух веков, но опыт Юнга не был забыт и даже стал фундаментом нового метода рентгеновской спектроскопии, который позволяет более детально изучить физические свойства твердого тела. Итак, почему опыт Юнга считается одним из основополагающих в физике, как его применили современные ученые и что у них из этого получилось мы узнаем из доклада исследовательской группы. Поехали.
Немного предыстории
Как уже было сказано, в далеком 1803 году Томас Юнг опубликовал описание своего необычного эксперимента. И поскольку «кто не знает прошлого, не имеет будущего», мы коротенько этот опыт с вами рассмотрим.

Томас Юнг
Итак, для проведения опыта было необходимо всего три вещи: свет, пластина с двумя вертикальными прорезями и проекционный экран. При этом световое излучение было монохроматическим, то есть обладало минимальным частотным разбросом. Свет направляется на пластину со щелями, ширина которых должна быть максимально приближена к длине волны излучения. А проекционный экран необходим для наблюдения за результатом.
И тут возникает столкновение двух теорий света — корпускулярной и волновой.
Первая предполагает, что свет состоит из частиц. А вторая — что это волна. Опираясь на каждую из этих теорий мы должны получить разный результат в опыте Юнга.
А теперь подключим немного фантазии. Представьте, что вы играете в страйкбол с нашей опытной ширмой с прорезями (да, противник из нее не очень, но суть не в этом). Вы стреляете из ружья шариками, часть которых отскакивает от ширмы, а часть проходит через прорези и попадает в проекционный экран. Ружье — источник светового излучения. Шарики — частицы света. Таким образом на экране мы видим две полоски, то есть две области попадания из ружья.

Схематическое изображение опыта Юнга.
С волновой теорией все еще интереснее, потому потребуется еще больше фантазии. Теперь вы играете в межгалактический страйкбол, а ваше ружье, простите, ваш бластер стреляет волнами. Когда вы стреляете волной в ширму, две прорези становятся началом (источником) двух новых вторичных волн, которые уже за ширмой будут пересекаться. И тут мы будем видеть на экране сразу несколько разных результатов (областей «попадания»). Этот результат и есть интерференция света, но он требует определенных условий.
Во-первых, источники света (в опыте их два) должны быть когерентными, то есть согласованными. Создать два согласованных световых излучения проблематично, мягко говоря. Посему используется один луч света, который разделяется на два за счет той самой ширмы с прорезями. Так мы имитируем когерентность за счет вторичных волн первичного светового излучения.
Во-вторых, важную роль играет ширина прорезей, так как при ее увеличении будет расти освещенность экрана, то есть сложнее будет различить максимумы и минимумы интерференционной картины. Посему ширина должна быть максимально приближена к длине волны излучения.
И в-третьих, расстояние между прорезями влияет на частоту следования интерференционных полос.
В итоге Томас Юнг не только предоставил доказательства интерференции света, но и породил еще больше споров между сторонниками двух теорий, корпускулярной и волновой.
На самом же деле опыт Юнга никого особо не ссорил (я надеюсь, ибо ученые тоже могут быть драчунами), а скорее подтолкнул к еще более глубокому изучению света, его особенностей и способов его пояснения.
С ростом интереса к квантовой физике опыт Юнга получил еще одну теорию в свою копилку — квантовую. И тут нам фантазия не сильно поможет, поскольку крайне сложно представить себе шарик для страйкбола, способный одновременно быть и частицей, и волной, и разделяться, и соединяться, и черт знает что еще делать. Суть такова — ученые решили провести эксперимент Юнга с электроном, использовав его вместо света.
Ученые «выстреливали» по одному электрону, чтобы у них не было возможности взаимодействовать друг с другом. На пути у них была такая же ширма с двумя прорезями, как и в классическом опыте Юнга, а потом экран для визуализации результатов.
По логике, одиночные электроны, попавшие в прорези, должны сформировать на экране две области попадания, то есть как в корпускулярной теории. Однако мы знаем, что квантовая теория и классическая логика частенько расходятся. Результатом опыта с электронами было множество областей попадания, то есть как в волновой теории. Другими словами, электрон является и частицей, и волной (волна де Бройля, если точнее) одновременно. Таким образом электрон находится в состоянии квантовой суперпозиции, то есть обладает сразу несколькими состояниями, которые невозможно реализовать одновременно с точки зрения классической физики. Да уж, порой кажется, что классическая и квантовая физики это Людвиг ван Бетховен и Оззи Осборн — оба крутые, но во многом очень разные.
Небольшой видео-урок по теме:

Часть I

Часть II
Томас Юнг видимо и представить не мог как далеко зайдет его опыт, и как много нового он может рассказать. А сейчас мы рассмотрим уже деяния наших современников, решивших применить опыт Томаса Юнга для реализации нового типа рентгеновской спектроскопии.
Основа исследования
Ярким примером принадлежности чего-то и к частицам, и к волнам в квантовой механике является неупругое рассеяние рентгеновского излучения (RIXS). С точки зрения частиц в RIXS рентгеновский фотон выталкивает электрон из ядра атома в валентную оболочку. В этот момент образуется высоковозбужденное атомное состояние, в котором имеется очень локализованная «пустота» размером в несколько пикометров. Такое промежуточное состояние очень быстро распадается, чему соответствует тот факт, что пустота заполняется валентным электроном при переизлучении фотона. Конечное же возбужденное состояние может соответствовать орбитальному, магнитному или межзонному возбуждению.

Исследователи же фокусируются на изучении рентгеновских волн, распространяющихся через вышеупомянутое локализованное промежуточное состояние, а после образующих интерференцию.
Ученые переносят нас немного в прошлое, точнее в 90-ые годы. По их словам уже тогда стало очевидно — даже если в RIXS рассеяние неупругое, а дыра в ядре атома (лучше назвать это термином «вакансия») очень локальна, то все равно амплитуды ее образования и аннигиляции должны быть когерентно суммированы при задействовании идентичных ионов, участвующих в делокализации финального состояния возбуждения. Вследствие всего этого возможна интерференция.

Изображение №1
И вот уже в 1994 году было предположено проявление интерференции для RIXS в двухатомных молекулах, что соответствует опыту Юнга. Это возможно за счет того, что промежуточное состояние RIXS содержит единственную вакансию ядра, которая может быть на любом из двух атомов в молекуле (изображение №1). В конечном состоянии электрон находится на возбужденной молекулярной орбитали, которая делокализована по двум атомам. Рентгеновское же излучение создает интерференцию в виде синусоидального интерференционного колебания на графике.
В качестве основного подопытного был выбран Ba3CeIr2O9 (BCIO) — изолятор, который является кристаллическим твердым телом с квазимолекулярной электронной структурой (2А). Такие характеристики позволяют значительно четче рассмотреть интерференцию, являющуюся ярким признаком симметрии низкоэнергетических электронных возбуждений.
Результаты исследований
Итак, для начала ученые вырастили индивидуальные кристаллы BCIO. Каждый из Ir4+ ионов внутри структурных димеров показал 5d5 конфигурацию с одной вакансией в t2g оболочке.

Изображение №2
Ученые отмечают, что минимальное расстояние между соседствующими ионами (Ir-Ir) составило 2.5 Å. Соответственно, внутридимерное ионное взаимодействие достаточно сильно и способствует формированию квази-молекулярных орбиталей с сильным связывающим-антисвязывающим расщеплением. Такая ситуация очень сильно отличается от той, когда имеется один Ir4+, когда сильная спин-орбитальная связь (λ ≈ 0.4-0.5 эВ) разделяет локальное t2g-многообразие и приводит к спин-орбитальным-запутанным j = 1/2 моментам (2В).
В случае сильного спин-орбитального взаимодействия связывающие/антисвязывающие состояния могут формироваться из спин-орбитального-запутанного j = 1/2 состояния (2D). Однако сильное Ir-Ir взаимодействие может погасить j = 1/2 моменты. В таком случае t2g орбитали становятся куда более подходящей основой для формирования связывающих/антисвязывающих состояний (2С).

Изображение №3
На изображении 3А мы можем увидеть результаты RIXS образца Ba3CeIr2O9 при фиксированном излучении, настроенном на L3 край Ir (2p→5d), что резонансно усиливает неупругое рассеяние от возбуждений внутри t2g. 5d t2g — eδg расщепление выше 3 эВ, при этом наблюдаемые функции (a, B и ℽ на графике) находятся в диапазоне 0.5 … 1.5 эВ. Таким образом их можно отнести к внутре-t2g возбуждениям. Также стоит отметить, что на графике нет характерных для индивидуальных j = 1/2 моментов особенностей, а пик спин-орбитального возбуждения достигает максимума в 1.5 λ.

Исследователи отмечают еще одно важное наблюдение: интегральная интенсивность функций демонстрирует ярко выраженные особенности интерференции двух лучей, другими словами четкое синусоидальное колебание как функции qc (3B). Таким образом мы получили опыт Юнга, только в данном случае вместо расстояния между прорезями мы имеем расстояние между ионами (Ir-Ir).
Данное исследование — одно из самых сложных из тех, что я встречал, посему настоятельно рекомендую ознакомиться сдокладом ученыхидополнительными материаламик нему, если вас интересуют детали, нюансы и подробности сего труда.
Эпилог
Ученые считают, что самой важной особенностью RIXS интерферометрии является возможность определять симметрию низкоэнергетических возбуждений, что помогает отличить два разных варианта орбиталей, описанных на изображениях 2С и 2D.
Конечно, на этом исследование нового метода рентгеновской спектроскопии не завершится, ведь ученые только слегка описали вершину айсберга. Дальнейшие эксперименты с другими типами материалов могут открыть новые пути реализации сей техники. В любом случае совершенствование новейших методик исследования физических свойств даже уже изученных (якобы) объектов это дело благое.
К тому же, данное исследование стало наглядным примером того, что открытия и наблюдения, совершенные несколько веков назад еще способны не только удивлять, но и быть невероятно полезными для создания новых технологий, методик и т.д.
Благодарю за внимание, оставайтесь любопытствующими, несмотря на сложность заинтересовавшего вас материала :), и отличной всем рабочей недели, ребята.
Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас оформив заказ или порекомендовав знакомым, 30% скидка для пользователей Хабра на уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2650 v4 (6 Cores) 10GB DDR4 240GB SSD 1Gbps от $20 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).
VPS (KVM) E5-2650 v4 (6 Cores) 10GB DDR4 240GB SSD 1Gbps до весны бесплатно при оплате на срок от полугода, заказать можно .
Dell R730xd в 2 раза дешевле? Только у нас 2 х Intel Dodeca-Core Xeon E5-2650v4 128GB DDR4 6x480GB SSD 1Gbps 100 ТВ от $249 в Нидерландах и США! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?

Заранее приношу извинения, всем, чьи научные взгляды пострадают при прочтении.
В эксперименте с двумя щелями никакого дуализма в поведении частиц нет. Результаты опыта
просто объясняются, без фокусов и волшебства, в рамках классической физики. Думаю, пора
избавиться от ошибок, допущенных по неведению авторитетными физиками, при интерпретациях
этого эксперимента. Принято считать, что при попадании на экран, частицы ведут себя то как волна,
то как частицы. Возможно, ошибка в том, что интерпретаторы опыта по каким-то причинам и
заряженные частицы, и электромагнитные поля(элм поля) принимают за одну субстанцию. Конечно,
заряженные частицы создают вокруг себя элм поля и поэтому они связаны между собой. Но это
разные субстанции и превращаться друг в друга по мановению волшебной палочки не могут. Странно
говорить, что элм частицы ведут себя как волна, только потому, что они по какой-то причине
отклоняются в сторону и создают на экране картинку, которую в оптике называют
интерференционной. Принято считать такую картинку парадоксальной. Изменение геометрии этого
опыта приводит к исчезновению парадоксальной картинки. Мало того, даже попытка узнать через
какую щель пролетела частица с помощью бомбардировки её фотонами приводит к исчезновению
парадоксальных результатов. Складывается ошибочное ощущение, что частицы ведут себя
неадекватно.
Долетев до экрана, частица оставляет на нём след, независимо от того, какую картинку мы
наблюдаем на экране. Разница только в том, что в одном случае частицы летят по одним траекториям,
а в другом случае частицы летят по другим траекториям. Наша задача-найти причины, заставляющие
частицы лететь по-разному, а не заниматься созданием мифологических теорий в физике и
превращать её в лженауку. Как-никак, на дворе 21 век. Заряженная частица-это структурированная
определённым образом материя, а волна-это колебания элм поля в пространстве. В нашем мире
невозможно найти более разных субстанций, чем частица и волна.
Я исхожу из того, что между перегородкой со щелями и экраном, частица двигается в
электромагнитном поле и следовательно подвергается воздействию этого поля. Всё, что нужно для
объяснения эксперимента-это понять структуру элм поля и оценить качественно как влияет это поле
на летящие частицы. Всё это можно сделать в терминах классической физики, не прибегая к чудесам
квантовой физики.
В опыте с двумя щелями, элм поле между перегородкой и экраном образовано сложением двух
вторичных, когерентных элм полей от двух синхронных, когерентных источников. Именно это
суммарное элм поле заставляет двигаться заряженные частицы по траекториям, которые могут
показаться странными, если не принимать во внимание, что частицы летят, имея не только
собственное движение, но и подвергаются воздействию элм поля. Это суммарное поле очень
структурированное, потому что создано двумя когерентными источниками, роль которых играют две
щели в перегородке, имеющие строго подобранные размеры и геометрию. Именно благодаря особой
структурированности этого поля, частицы летят к экрану по строго заданным траекториям, создавая
на экране чередование полос. Строго говоря и частицы, и элм поля существуют вместе. По-другому не
бывает. Любой источник генерирует элм волны и заряженные частицы в разных сочетаниях.
Считается, что наиболее часто вместе с элм волнами генерируются фотоны. (Есть версия, что фотоны
не только генерируются источником, но и возбуждаются элм полями, находясь вне источника и
являясь составной частью особой формы материи-электромагнитного пространства. Если фотоны
есть в источнике, то почему их не должно быть во всём окружающем электромагнитном пространстве
и почему они не могут возбуждаться электромагнитными полями вне источника?)
Несомненно, что в этом опыте мы имеем дело и с частицами, и с волнами, а не с частицами,
ведущими себя, как волны.
Когда мы складываем два элм поля от разных источников, то получается суперпозиция-суммарное
поле. Оно, в общем случае, может получиться любым. Если оба складываемых поля не согласованы,
то суммарное поле будет хаотичным, не имеющим строго приоритетных направлений. Под
действием такого поля, заряженная частица будет совершать хаотичные, судорожные движения,
похожие на флуктуации, если у этой частицы не было своего собственного движения. При наличии
собственного движения, частица будет двигаться по собственной траектории, обусловленной
источником, из которого она вылетела.
Совсем другое дело, если такая частица окажется в структурированном элм поле. В таком поле
движение частицы будет суммой собственного движения и движения, которое обусловлено
действием поля. Оба поля за щелями абсолютно одинаковы. У них абсолютно одинаковые периоды
колебаний, частоты и амплитуды. Складывать такие поля-одно удовольствие. На всём протяжении от
щелей до экрана оба поля во всех точках имеют неизменяющуюся разность фаз. Это значит, что там
где разность фаз равна нулю мы получаем удвоение амплитуд. В таких точках колебания параметров
элм поля удваиваются. В тех точках, где параметры элм полей колеблются в противофазе, суммарное
элм поле оказывается равным нулю. Таким образом, там, где фазы совпали-элм поле вдвое
усилилось, а там где фазы противоположны-элм поле исчезло. По мере удаления от точек с
удвоенными колебаниями к точкам, где нет поля-колебания плавно уменьшаются от 2Емах до 0.
Таким образом, мы имеем характерные зоны с удвоенными колебаниями и характерные зоны где
поля нет. В результате между перегородкой со щелями и экраном образовались характерные
дорожки, идущие от зоны щелей к экрану. На рисунке эти дорожки показаны красным и зелёным
цветом. Красным цветом показаны дорожки с максимальными амплитудами колебаний. Зелёным
цветом показаны дорожки, где электромагнитного поля вообще нет.
Электромагнитные частицы не только создают электромагнитные поля, но и сами подвергаются
воздействию электромагнитных полей. Зоны, где нет элм поля не взаимодействуют с летящими
заряженными частицами и на движение частиц не влияют. Зато там, где есть элм поле, заряженная
частица захватывается элм полем. Элм поле отклоняет заряженные частицы и вынуждает их
двигаться по электромагнитным дорожкам, проходящим по линиям максимальных колебаний
электромагнитного поля. Никакого дуализма здесь нет. Частица, оказавшаяся в элм поле, совершает
не только собственное движение, но и подчиняется действию поля. В результате, элм поле вынуждает
частицу стремиться двигаться по дорожке максимальной напряжённости электромагнитного поля.
В опыте с электронами, при вылете из щели, элм поле заставляет электрон выбрать
электромагнитную дорожку, по которой он полетит дальше. Я думаю, что электроны попадают на
разные дорожки, потому что есть разброс попадания электронов в щель. Электроны, попадающие в
щель строго по центру, попадают на центральную для данной щели дорожку и оказываются на экране
напротив щели. Соответственно, электроны попавшие в щель левее середины, отклоняются на левые
элм дорожки, а попавшие правее середины отклоняются на правые дорожки.
При ширине щелей равной или близкой к длине волны в полном соответствии с вышесказанным, на
экране получается интерференционная картинка. Увеличение ширины щелей, приводит к тому, что
вторичные источники теряют когерентность. В результате складываются всё более и более
размазанные электромагнитные поля. Суммарное поле, автоматически, тоже становится всё более и
более размазанным и теряет свою красивую, чётко выраженную структуру. Чётко выраженные элм
дорожки становятся всё более и более размазанными и в конце концов пропадают. Всё это приводит
к увеличению разброса электронов на экране, вплоть до полного исчезновения интерференционной
картины и появления двух размазанных полос напротив щелей.
Строго говоря, разрушение структурированного элм поля от двух когерентных источников,
неизбежно должно приводить к разрушению так называемой интерференционной картинки на
экране. Например, красивую структурированность элм поля между перегородкой и экраном можно
разрушить, создав в этой же зоне другое элм поле от измерительного прибора.
Ничего такого, что могло бы вызвать недоумение и удивление в этом опыте нет. Всё очень логично и
объяснимо в рамках классической физики.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *